Linear Algebra
 [KOMS120301] - 2023/2024

12.1-Basis and Dimension

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 12 (November 2023)

Basis of vector space

Intuitive example

In $\mathbb{R}^{3} \rightarrow$ Let $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$
Every vector $\mathbf{v}=(a, b, c) \in \mathbb{R}^{3}$ can be expressed as a linear combination of the vector basis, namely:

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}
$$

In $\mathbb{R}^{n} \rightarrow$ This can be generalized for the Euclidean vector space \mathbb{R}^{n}
Let: $\mathbf{e}_{1}=(1,0,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \mathbf{e}_{3}=(0,0,0, \ldots, 1)$
Every vector $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ can be expressed as:

$$
\mathbf{v}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{v}_{2}+\cdots+v_{n} \mathbf{v}_{n}
$$

Can a vector space have more than one basis? What about the basis of general vector space V?

Rectangular and non-rectangular linear system

Coordinates of P in a rectangular coordinate system in 2-space.

Coordinates of P in a nonrectangular coordinate system in 2-space.

Coordinates of P in a rectangular coordinate system in 3-space.

Coordinates of P in a nonrectangular coordinate system in 3-space.

In linear algebra, coordinate systems are commonly specified using vectors rather than coordinate axes.

Formal definition of basis

If V is any vector space and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a set of vectors in V, then S is called a basis for V if the following two conditions hold:

1. S is linearly independent;
2. S spans V.

Example 1: standard basis for \mathbb{R}^{n}

The standard basis for \mathbb{R}^{n} is the set of vectors $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$, where:

$$
\mathbf{e}_{1}=(1,0,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{n}=(0,0,0, \ldots, 1)
$$

This means that: $\forall \mathbf{v} \in V$, then $\exists k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{R}$, s.t.:

$$
\mathbf{v}=k_{1} \mathbf{e}_{1}+k_{2} \mathbf{e}_{2}+\cdots+k_{n} \mathbf{e}_{n}
$$

Example (specific case, in \mathbb{R}^{3})
In \mathbb{R}^{3}, we have the standard basis:

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)
$$

Example 2: standard basis for P_{n}

Show that the set $S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a standard basis for vector space P_{n} of polynomials.

Solution:

By the theorem, it should be showed that the polynomials in S are linearly independent, and span P_{n}.

Denote the polynomials by vectors:

$$
\mathbf{p}_{0}=1, \mathbf{p}_{1}=x, \mathbf{p}_{2}=x^{2}, \ldots, \mathbf{p}_{n}=x^{n}
$$

We showed (in the previous discussion) that the vectors span P_{n}, and they are linearly independent.

Example 2: another basis for \mathbb{R}^{3}

Show that the vectors:

$$
\mathbf{v}_{1}=(1,2,1), \mathbf{v}_{2}=(2,9,0), \text { and } \mathbf{v}_{3}=(3,3,4)
$$

form a basis for \mathbb{R}^{3}.

Solution:

It must be showed that the vectors are linearly independent and span \mathbb{R}^{3}.

- Linear independence: the vector equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{3} \mathbf{v}_{3}=\mathbf{0}
$$

has only the trivial solution.

- Span the vector space \mathbb{R}^{3} : every vector $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$ can be expressed as:

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{3} \mathbf{v}_{3}=\mathbf{b}
$$

Example 2 (cont.)

The vector equations can be expressed as linear systems:

$$
\left\{\begin{array} { r l }
{ c _ { 1 } + 2 c _ { 2 } + 3 c _ { 3 } } & { = 0 } \\
{ 2 c _ { 1 } + 9 c _ { 2 } + 3 c _ { 3 } } & { = 0 } \\
{ c _ { 1 } } & { = 0 c _ { 3 } }
\end{array} \quad 0 \quad \left\{\begin{array}{rl}
c_{1}+2 c_{2}+3 c_{3} & =b_{1} \\
2 c_{1}+9 c_{2}+3 c_{3} & =b_{2} \\
c_{1}+4 c_{3} & =b_{3}
\end{array}\right.\right.
$$

To show that the homogeneous linear system (left) has only trivial solution and the system (right) has a unique solution, is equivalent to showing that the coefficient matrix:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 9 & 3 \\
1 & 0 & 4
\end{array}\right]
$$

has nonzero determinant.
Task: Prove that $\operatorname{det}(A) \neq 0$.

Uniqueness of basis representation

Theorem (Uniqueness)

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of a vector space V, then every vector \mathbf{v} in V can be expressed in the following form, in exactly one way.

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

Uniqueness of basis representation

Theorem (Uniqueness)

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of a vector space V, then every vector \mathbf{v} in V can be expressed in the following form, in exactly one way.

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

Proof.

Suppose that v can be expressed in another linear combination, say:

$$
\mathbf{v}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}
$$

Substracting two equations gives:

$$
\underline{0}=\left(c_{1}-k_{1}\right) \mathbf{v}_{1}+\left(c_{2}-k_{2}\right) \mathbf{v}_{2}+\cdots+\left(c_{n}-k_{n}\right) \mathbf{v}_{n}
$$

Since vectors in S are linearly independent, then:

$$
c_{1}-k_{1}=0, c_{2}-k_{2}=0, \ldots, c_{n}-k_{n}=0
$$

meaning that: $c_{1}=k_{1}, c_{2}=k_{2}, \ldots, c_{n}=k_{n}$

Dimension

The number of vectors in a basis

A vector space may have more than one basis which are of the same size.
Theorem (Size of Basis)
All bases for a finite-dimensional vector space have the same number of vectors.

The theorem follows from the following observation.

The number of vectors in a basis

A vector space may have more than one basis which are of the same size.

Theorem (Size of Basis)

All bases for a finite-dimensional vector space have the same number of vectors.

The theorem follows from the following observation.
Theorem
Let V be an n-dimensional vector space, and let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be any basis.

1. If a set in V has more than n vectors, then it is linearly dependent.
2. If a set in V has fewer than n vectors, then it does not span V.

Proof.

The statements follow because the vectors in S are linearly independent.

Dimension

The dimension of a finite-dimensional vector space V is defined to be the number of vectors in a basis for V.

The zero vector space is defined to have dimension zero.

Example (Dimensions of some familiar vector spaces)

$$
\begin{aligned}
\operatorname{dim}\left(\mathbb{R}^{n}\right) & =n & & \text { [the standard basis has } n \text { vectors] } \\
\operatorname{dim}\left(P_{n}\right) & =n+1 & & \text { [the standard basis has } n+1 \text { vectors] } \\
\operatorname{dim}\left(M_{m n}\right) & =m n & & \text { [the standard basis has } m n \text { vectors] }
\end{aligned}
$$

Task: What is the standard basis for each of the vector space?

Example 1: dimension of $\operatorname{span}(S)$

Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be the set of linearly independent vectors.
Prove that $\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}\right)=n$.

Solution:

Every vector in $\operatorname{span}(S)$ can be expressed as a linear combination of the vectors in S.

Hence, S is the basis of $\operatorname{span}(S)$.
By the "Size of Basis" theorem,

$$
\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}\right)=n
$$

Example 2: dimension of a solution space

Given the following linear system:

$$
\left\{\begin{aligned}
x_{1}+3 x_{2}-2 x_{3}+2 x_{5} & =0 \\
2 x_{1}+6 x_{2}-5 x_{3}-2 x_{4}+4 x_{5}-3 x_{6} & =0 \\
5 x_{3}+10 x_{4}+15 x_{5} & =0 \\
2 x_{1}+6 x_{2}+8 x_{4}+4 x_{5}+18 x_{6} & =0
\end{aligned}\right.
$$

Find the dimension of the solution space of the linear system.

Solution:

- Find the solution of the system:

$$
x_{1}=-3 r-4 s-2 t, x_{2}=r, x_{3}=-2 s, x_{4}=s, x_{5}=t, x_{6}=0
$$

- In vector form:

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(-3 r-4 s-2 t, r,-2 s, s, t, 0) \\
& \quad=r(-3,1,0,0,0,0)+s(-4,0,-2,1,0,0)+t(-2,0,0,0,1,0)
\end{aligned}
$$

Example 2 (cont.)

- So the following vectors span the vector space:

$$
\mathbf{v}_{1}=(-3,1,0,0,0,0), \mathbf{v}_{2}=(-4,0,-2,1,0,0), \mathbf{v}_{3}=(-2,0,0,0,1,0)
$$

- Check that the set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. It should be showed that the vector equation:

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=0
$$

has only trivial solution, i.e. $c_{1}=0, c_{2}=0, c_{3}=0$.
Verify it!

- If it is, then S is a basis of the solution space, and $\operatorname{dim}(S)=3$.

Dimension of subspace

Theorem
If W is a subspace of a finite-dimensional vector space V, then:

1. W is finite-dimensional;
2. $\operatorname{dim}(W) \leq \operatorname{dim}(V)$;
3. $W=V$ if and only if $\operatorname{dim}(W)=\operatorname{dim}(V)$.

Proof.
See page 225 of "Elementary Linear Algebra Applications Version (Howard Anton, Chris Rorres - Edisi 1-2013)".

to be continued...

