Linear Algebra [KOMS120301] - 2023/2024

12.1 - Basis and Dimension

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 12 (November 2023)

1 / 19 © Dewi Sintiari/CS Undiksha

Basis of vector space

2 / 19 © Dewi Sintiari/CS Undiksha

Intuitive example

In $\mathbb{R}^3 \to \text{Let } \mathbf{i} = (1, 0, 0), \ \mathbf{j} = (0, 1, 0), \ \mathbf{k} = (0, 0, 1)$

Every vector $\mathbf{v} = (a, b, c) \in \mathbb{R}^3$ can be expressed as a linear combination of the vector basis, namely:

$$\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

In $\mathbb{R}^n \to$ This can be generalized for the Euclidean vector space \mathbb{R}^n Let: $\mathbf{e}_1 = (1, 0, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0), \ \mathbf{e}_3 = (0, 0, 0, \dots, 1)$ Every vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ can be expressed as:

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{v}_2 + \cdots + v_n \mathbf{v}_n$$

Can a vector space have more than one basis? What about the basis of general vector space V?

3 / 19 © Dewi Sintiari/CS Undiksha

Rectangular and non-rectangular linear system

4 / 19

© Dewi Sintiari/CS Undiksha

A D > A B > A B > A B >

In linear algebra, coordinate systems are commonly specified using **vectors** rather than coordinate axes.

5 / 19 © Dewi Sintiari/CS Undiksha

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Formal definition of basis

If V is any vector space and $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is a set of vectors in V, then S is called a basis for V if the following two conditions hold:

1. S is linearly independent;

2. S spans V.

6 / 19 © Dewi Sintiari/CS Undiksha

Example 1: standard basis for \mathbb{R}^n

The standard basis for \mathbb{R}^n is the set of vectors $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, where:

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0), \ \dots, \ \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

This means that: $\forall \mathbf{v} \in V$, then $\exists k_1, k_2, \dots, k_n \in \mathbb{R}$, s.t.:

$$\mathbf{v} = k_1 \mathbf{e}_1 + k_2 \mathbf{e}_2 + \cdots + k_n \mathbf{e}_n$$

Example (specific case, in \mathbb{R}^3) In \mathbb{R}^3 , we have the standard basis:

$$\mathbf{i} = (1,0,0), \ \mathbf{j} = (0,1,0), \ \mathbf{k} = (0,0,1)$$

7 / 19 © Dewi Sintiari/CS Undiksha

(日)

Example 2: standard basis for P_n

Show that the set $S = \{1, x, x^2, ..., x^n\}$ is a standard basis for vector space P_n of polynomials.

Solution:

By the theorem, it should be showed that the polynomials in S are linearly independent, and span P_n .

Denote the polynomials by vectors:

$$\mathbf{p}_0 = 1, \ \mathbf{p}_1 = x, \ \mathbf{p}_2 = x^2, \ \dots, \ \mathbf{p}_n = x^n$$

We showed (in the previous discussion) that the vectors span P_n , and they are linearly independent.

8 / 19 © Dewi Sintiari/CS Undiksha

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example 2: another basis for \mathbb{R}^3

Show that the vectors:

$$\mathbf{v}_1 = (1, 2, 1), \ \mathbf{v}_2 = (2, 9, 0), \ \text{and} \ \mathbf{v}_3 = (3, 3, 4)$$

form a basis for \mathbb{R}^3 .

Solution:

It must be showed that the vectors are linearly independent and span \mathbb{R}^3 .

• Linear independence: the vector equation

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_3\mathbf{v}_3=\mathbf{0}$$

has only the trivial solution.

Span the vector space ℝ³: every vector b = (b₁, b₂, b₃) ∈ ℝ³ can be expressed as:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_3\mathbf{v}_3 = \mathbf{b}$$

9 / 19 © Dewi Sintiari/CS Undiksha

(日)

Example 2 (cont.)

The vector equations can be expressed as linear systems:

$$\begin{cases} c_1 + 2c_2 + 3c_3 = 0\\ 2c_1 + 9c_2 + 3c_3 = 0\\ c_1 + 4c_3 = 0 \end{cases} \begin{cases} c_1 + 2c_2 + 3c_3 = b_1\\ 2c_1 + 9c_2 + 3c_3 = b_2\\ c_1 + 4c_3 = b_3 \end{cases}$$

To show that the homogeneous linear system (*left*) has only trivial solution and the system (*right*) has a unique solution, is equivalent to showing that the coefficient matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix}$$

has nonzero determinant.

Task: Prove that $det(A) \neq 0$.

10 / 19 © Dewi Sintiari/CS Undiksha

Uniqueness of basis representation

Theorem (Uniqueness)

If $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ is a basis of a vector space V, then every vector \mathbf{v} in V can be expressed in the following form, in exactly one way.

 $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$

Uniqueness of basis representation

Theorem (Uniqueness)

If $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ is a basis of a vector space V, then every vector \mathbf{v} in V can be expressed in the following form, in exactly one way.

 $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$

Proof.

Suppose that \mathbf{v} can be expressed in another linear combination, say:

$$\mathbf{v} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$

Substracting two equations gives:

$$\underline{0} = (c_1 - k_1)\mathbf{v}_1 + (c_2 - k_2)\mathbf{v}_2 + \cdots + (c_n - k_n)\mathbf{v}_n$$

Since vectors in S are linearly independent, then:

$$c_1 - k_1 = 0, \ c_2 - k_2 = 0, \ \ldots, \ c_n - k_n = 0$$

meaning that: $c_1 = k_1, c_2 = k_2, \ldots, c_n = k_n$ (D) (C) Undiksha

Dimension

12 / 19 © Dewi Sintiari/CS Undiksha

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The number of vectors in a basis

A vector space may have more than one basis which are of the same size.

Theorem (Size of Basis)

All bases for a finite-dimensional vector space have the same number of vectors.

The theorem follows from the following observation.

13 / 19 © Dewi Sintiari/CS Undiksha

The number of vectors in a basis

A vector space may have more than one basis which are of the same size.

Theorem (Size of Basis)

All bases for a finite-dimensional vector space have the same number of vectors.

The theorem follows from the following observation.

Theorem

Let V be an n-dimensional vector space, and let $S = \{v_1, v_2, \ldots, v_n\}$ be any basis.

- 1. If a set in V has more than n vectors, then it is linearly dependent.
- 2. If a set in V has fewer than n vectors, then it does not span V.

Proof.

The statements follow because the vectors in S are linearly independent.

Dimension

The dimension of a finite-dimensional vector space V is defined to be the number of vectors in a basis for V.

The zero vector space is defined to have dimension zero.

Example (Dimensions of some familiar vector spaces)

$dim(\mathbb{R}^n) = n$	[the standard basis has <i>n</i> vectors]
$\dim(P_n)=n+1$	[the standard basis has $n+1$ vectors]
$\dim(M_{mn})=mn$	[the standard basis has <i>mn</i> vectors]

Task: What is the standard basis for each of the vector space?

▲□▶▲□▶▲□▶▲□▶ □ のQで

Example 1: dimension of span(S)

Let $\{\textbf{v}_1, \textbf{v}_2, \dots, \textbf{v}_n\}$ be the set of linearly independent vectors.

Prove that dim $(span\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}) = n$.

Solution:

Every vector in span(S) can be expressed as a linear combination of the vectors in S.

Hence, S is the basis of span(S).

By the "Size of Basis" theorem,

$$\dim(span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\})=n$$

Example 2: dimension of a solution space

Given the following linear system:

$$\begin{cases} x_1 + 3x_2 - 2x_3 + 2x_5 = 0\\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = 0\\ 5x_3 + 10x_4 + 15x_5 = 0\\ 2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 0 \end{cases}$$

Find the dimension of the solution space of the linear system. **Solution:**

• Find the solution of the system:

$$x_1 = -3r - 4s - 2t, \ x_2 = r, \ x_3 = -2s, \ x_4 = s, \ x_5 = t, \ x_6 = 0$$

In vector form:

$$\begin{aligned} &(x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, 0) \\ &= r(-3, 1, 0, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0) \end{aligned}$$

16 / 19 © Dewi Sintiari/CS Undiksha

Example 2 (cont.)

• So the following vectors span the vector space:

 $\textbf{v}_1 = (-3,1,0,0,0,0), \ \textbf{v}_2 = (-4,0,-2,1,0,0), \ \textbf{v}_3 = (-2,0,0,0,1,0)$

Check that the set of vectors S = {v₁, v₂, v₃} is linearly independent. It should be showed that the vector equation:

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3=0$$

has only trivial solution, i.e. $c_1 = 0, c_2 = 0, c_3 = 0$.

Verify it!

If it is, then S is a basis of the solution space, and dim(S) = 3.

17 / 19 © Dewi Sintiari/CS Undiksha

(日)

Dimension of subspace

Theorem

If W is a subspace of a finite-dimensional vector space V, then:

- 1. W is finite-dimensional;
- 2. dim $(W) \leq \dim(V)$;
- 3. W = V if and only if dim(W) = dim(V).

Proof.

See page 225 of "Elementary Linear Algebra Applications Version (Howard Anton, Chris Rorres - Edisi 1 - 2013)".

18 / 19 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

to be continued...

19 / 19 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ